Engineering genetic circuit interactions within and between synthetic minimal cells
نویسندگان
چکیده
Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.
منابع مشابه
Synthetic Biology Based on Genetic Logic Circuit, Using the Expression of Drug Resistance, BCRP Pump in MCF-7 Cancer Cell Line
Biological circuits are developed as biological parts within a cell to carry out logical functions resembling those studied in electronics circuits. These circuits can be performed as a method to vary cellular functions, to develop cellular responses to environmental conditions, or to regulate cellular developments. This research explored the possibility of synthetic biology based on the geneti...
متن کاملSynthetic Biology Based on Genetic Logic Circuit, Using the Expression of Drug Resistance, BCRP Pump in MCF-7 Cancer Cell Line
Biological circuits are developed as biological parts within a cell to carry out logical functions resembling those studied in electronics circuits. These circuits can be performed as a method to vary cellular functions, to develop cellular responses to environmental conditions, or to regulate cellular developments. This research explored the possibility of synthetic biology based on the geneti...
متن کاملRegulation of gene expression in tissue engineering, differentiation and bone regeneration of ossifying stem cells
Cells that make up the bodychr('39')s tissues are usually three-dimensional architecture, the threedimensional culture system enables cells to create natural and in vivo interactions which is an ideal environment for 3D (Three-dimensional) cell growth and issues such as exchange of similar food exchanges inside Capillary in living tissue. In tissue engineering discussion, cell scaffolding is hi...
متن کاملThe “Power Network” of Genetic Circuits
Synthetic biology is an emergent research field whose aim is to engineer novel genetic circuits in living cells. It has potential applications ranging from increasing biofuel production [25], to sensing environmental hazards [2], and to detecting and/or killing cancer cells [8, 9]. Enabled by advancements in genetic engineering, ever since early 2000s, researchers have been able to construct si...
متن کاملRapid cell-free forward engineering of novel genetic ring oscillators
While complex dynamic biological networks control gene expression in all living organisms, the forward engineering of comparable synthetic networks remains challenging. The current paradigm of characterizing synthetic networks in cells results in lengthy design-build-test cycles, minimal data collection, and poor quantitative characterization. Cell-free systems are appealing alternative environ...
متن کامل